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Chaos-induced synchronization in discrete-time oscillators driven by a random input
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The research reported in this paper focuses on the response of identical discrete-time neural oscillators to a
random telegraph signal input. It is shown that there are well-defined domains in which the random input can
synchronize even a large population of oscillators within a few hundred steps. The presence of chaos is shown
to be essential for the synchronization, which suggests a possible role for chaos in spatially extended physical
systems. The effect of independent noise on the system is also sti8li€63-651X98)05102-3

PACS numbg(s): 05.45:+b, 84.35:+i, 05.40+]

Recently there has been considerable interest in the syty the sign of the initial conditiof18]. Figure 1 shows the
chronization of chaotic oscillatof4—5]. While most of the  bifurcation diagram and the Lyapunov exponents of the map
work has focused on coupled continuous-time oscillators, théor fixed input—0.25<u<0.25, starting from a positive ini-

possibility of synchronizing chaotic maps via a driving sig- tial condition. They are calculated numerically from
nal also has been investigated. In particular, the issue of us-

ing a common “noiselike” input to synchronize a group of g ,

identical oscillators has generated some discuggienid). It MNe(W=377 “~ In[F"(z))|

was suggested initiallyf6] that identical quadratic maps

driven by a common noise but starting from different initial 1 T

states would synchronize spontaneously over a period of T & In|wa seck[u(az+u)]

about 16 steps. Subsequently, it was pointed pri9] that
this apparent synchronization was the result of finite preci- — ub secB[ ubz]|, )
sion in representing the system state and that the time to

synchronization scaled exponentially with increasing preciwhere 7 is the transient length and is taken to be very
sion, rendering this method impractical. Recently we havdarge.

reported that certain types of nonlinear maps can indeed be If u, is time varying, the system effectively jumps be-
synchronized reliably and rapidly by a noiselike inpid]. tween different dynamic regimes, each with its own
In this paper we look in closer detail at one particularly Lyapunov exponent. Previous wofk2—14 has shown that
simple type of driving input: a random telegraph signal.
Our results are closely related to previous work on random
maps[12—14], but focus more explicitly on the role of chaos
in producing synchronization.

The map we consider is based on a neural oscillator
model proposed by Wand5,16 and is a discrete-time ver-
sion of the Wilson-Cowan oscillatgd.7]. The map is given
by

state (2)

z.1=F(z,u) =tanf u(az+uy)]—tanj ubz], (1)

-02 -0+1 0 0.1 0.2

wherea, b, andu are parameters ang} is the drive. Note

that the drive is addeihsidethe nonlinearity and that, unlike Ineut (U)
the quadratic map, the dynamics &f are defined and 1 () -
bounded over the whole real line. The system described by 5
Eq. (1) will be called ax-a-b oscillator. It can be shown 0 1 §_
that if a=2b and u;=0 Vt, the map undergoes period- ai
doubling bifurcation to chaos ag is increased[15,16. -1 §
When the origin is unstable, the dynamics nfhas two §_
basins of attraction separated hy= 0. If the initial condition -2 >
Zo andu, have the same sign for &ll the dynamics remains -3
confined to the basin with the corresponding sign. 02 -0.1 0 0.1 0.2

In the fixed input cas&;=u Vt if u is set such that the Input (u)

map is chaotic foru=0, increasing|u| causes a series of

period-halving bifurcations in both basins, leading ultimately  FiG. 1. (a) Bifurcation diagram for a 5-5-1 oscillator as input
to cycles of period 2 for large fixed drives. There is also ajs changed(b) Numerically calculated Lyapunov exponent for the
hysteretic effect at the basin boundary, so that the sign of thescillator at different input values. The initial condition is positive
state for very small drive values is determined in some cases all cases.
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if a population of identical nonlinear maps starts from
slightly different initial conditions and is subject to a com-
mon noise, it will collapse into a small number of phase-
locked clusters, and possibly a single synchronized group, if
the Lyapunov exponent of the noisy system is negative.
Clearly, however, a negative Lyapunov exponent is not suf-
ficient to guarantee global synchronization, only collapse to
zero volume in phase space. The key requirement,in additior
to negative Lyapunov exponents, is to provide a mechanism
that precludes the formation of multiple clusters. Chaos pro-
vides such a mechanism. o

Consider a population of identical map¢z',u'), which
receives a random telegraph sigoak {«, 8}, 0<a<pg, as
common input. The values and 8 are chosen such that
= « puts the map in the chaotic regime while= 8 puts it in

(a) Lyapunov Exponent: p=0.2

0 005 0.125 02 025

- (c) Lyapunov Exponent: p=0.5

the k-cycle regime. The oscillators start with different posi- #0128 I'.

tive initial conditions and in the chaotic regime, so that the .
probability of accidental synchronization is zero at infinite 005 N
precision. Whernu, switches tog, the system hak domains 0 =
of attraction, one for each phase of tkecycle, and the 0 05 0

trajectories collapse towardsi<k small areas of phase
space. Ifu; remains atg long enough, the collapse is com-  FIG. 2. Domains of negative and positive Lyapunov exponents
plete and the population divides inta phase-locked clus- A for a 5-5-1 oscillator with@) p=0.2 and(c) p=0.5. The white
ters. If u; now changes tow, the clusters remain phase area indicated ~ and the black are&™. (b) and (c) Actual do-
locked, but the intercluster phase relationships are destroyedains of synchronizatioriwhite areas for a population of fifty
by chaos. Whem, changes back t@, each cluster chooses 5-5-1 oscillators. Each point in the-3 plane represents one simu-
one of thek available phases in the periodic regime, leadinglation of 1000 steps. Longer simulations increase the domains of
to n<m clusters. Clearly, each time a-3 switch occurs, Synchronization slightly, indicating slow synchronization near the
the number of clusters cannot increase, but there is a nonzeko -L~ boundary.
probability of decrease. K is small(e.g., 2 or 4, the num-
ber of clusters goes rapidly to 1 with very high probability. The Lyapunov exponent of the driven system can be calcu-
Two conditions are crucial to the success of the scenaridated by substitutings; for u in Eq. (2). However, we ap-
described above: (i) enough time spent in the periodic re- Proximate its mean value by
gime to allow sufficient collapse of trajectori@s., globally
negative Lyapunov exponerdand (i) occasional reversion to Ap=pAe(a) +gNe(B). (4)
the chaotic regime to disrupt intercluster phase relationships
(i.e., intermittently positive Lyapunov expongnCondition  Clearly, oncea and g8 are fixed, the possibility of synchro-
(i) is of course essential to achieve the necessary convenization is controlled wholly by thep parameter. Ifp is
gence of trajectories. Conditiofii) is more subtle. The re- small, the system spends long intervals of time in the peri-
version to chaos essentially makes the whole phase spacelic regime and synchronization occurs as described above.
(and thus allk domains of attractionindependently avail- However, if p is too small, not enough time is spent in the
able to each cluster without disrupting the phase lockingchaotic regime and synchronization is slow or absent alto-
among its members, thus allowing the clusters to merggether. Ifp is relatively high, the time spent in the periodic
without the possibility of splitting. Reversion to just a cycle regime may be too short to allow for complete collapse to a
of period 2k>k does not produce synchronization becausegcycle without interruption by chaos. However, if there is suf-
while it does increase the number of phase-space poinficient convergence during each periodic phése, Ar is
available to each cluster, it does not disrupt tiedative  negative, this will accumulate over time to produce synchro-
phase relationships between the clusters with respect to theézation, albeit slowly.
domains of attraction in thk-cycle regime. Similarly, it is Consider the case whem=0.2. Figure 2a) shows the
also important that the input signal to the system be randordomains corresponding to the negative and positive
to ensure a broad sampling of intercluster phase combind-yapunov exponents of the system g space. Let the
tions. A periodic square-wave input can easily produce awvhite region (with negative Ag) be denotedL™ and the
phase locking between the cluster dynamics and the inpublack (with positive A¢) L*. Following Yu, Ott, and Chen
trapping the system in a multicluster situation. [13], we expect that itr, Be L, all trajectories will collapse
We use a population of 5-5-1 oscillators to empirically to a small set of clusters. The domain of synchronization,
explore the phenomena described above. The input signal isowever, is only that subset af” where the two conditions
given by given above are satisfied. Based on the bifurcation diagram
of the oscillator(Fig. 1), the transition between the chaotic
and periodic regimes occurs @t ~0.05. Condition(ii) (oc-
a with probability p casional occurrence of chgos therefore satisfied in the

Ue= B with probability g=1—p. ®) regions R;={a<u*, B>u*} and R,={a>u*, B<u*}.
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state (z) FIG. 4. Mean separation of trajectoriés), in five 5-5-1 oscil-

lators with independent uniform noise betweer added to each
oscillator’s driving signal. The average was calculated over
5% 10* steps following 1000 steps for synchronization. The values
nfor p are 0.01(O), 0.05(X), 0.2 (+), and 0.5(*). Note the linear
flependence ofs), on ¢ for p<0.2.

FIG. 3. Invariant distribution of a 5-5-1 oscillator with
u=0.01. The distribution is calculated numerically, using® 10
data points. The vertical line at 0.2127 indicates the basi
boundary for the two phases of the period-2 attractor obtained whe
u is larger. .

test this, we added small amounts of independent ngjse

uniformly distributed betweertc, to the drive for each os-
Condition (i) is satisfied in regior.~. Thus the theoretical cillator i. The drive fori thus became;=u;+ 7;. We then
domain of synchronization is given =L N{R;UR,}. tracked the mean absolute distance between trajectsyies
However, close to the boundary between andL*, syn- =2[N(N—1)]"*S{L'SN |z —2l| after an initial syn-
chronization may take a long time becausg is only  chronization period ofr time steps. Figure 4 plots the time
slightly negative. Based on this analysis, synchronization i§Verage(s); against noise spreagj showing a strongly lin-
expected to occur in two bands Bf and fora>0.2 inR,.  €ar dependence fqr=<0.2. For largem, the time spent in
Figure 2b) shows the results for a population of fifty 5-5-1 the chaotic regime begins to magnify the noise more dra-
oscillators in thea-8 plane and the results are indeed asmatically. Note, however, that even far as high as 0.5,
expected. Figures (8 and Zd) show the results fomp relatively large amounts of noise can be tolerated if synchro-

—0.5, which are symmetric in the-3 plane, as expected nization is desired only to a low precision, which will often

from Eq. (3). Note that, in both cases, each simulation wasbe the case in applications such as neural modeling. In this

: context, the added noise has another useful consequence:
run onl_y for 1000 t|me gteps, so the broad coverage of th‘?l\/hen the common part of is switched off, the oscillators
theoretical synchronization doma8attests also to the speed desynchronize spontaneoasly since they are in the chaotic
of synchronization.

The synchronization process can be appreciated easily breglme neau,=0. Thus, adding a small amount of indepen-

- . - : . . h L hani ith
considering the case whegputs the system in the period-2 é’ent noise provides a desynchronization mechanism without

. ! ) disruptin nchronization fact of great significance for
regime. The basins of attraction for the two phases are dl(—js upting synchronization, a fact ot great significance 1o

; ; ; possible information processing applicatidss.
vided by the fixed point* of the F(z,u) map. For all but To conclude, the main result of the research described in
the smallestu values, tanfu(az*+u)]~1 if u and a are

. Y do -~ this paper is that chaos can help nonlinear oscillators syn-
large enough, S0 |n.the perloq-z*reglmé,ls gIven approXi-— chronize in response to a common random driving input.
mately by the implicit equationz =1*—tanl”[,ubz*] and is This synchronization would not happen generically in the
independent oi. For the .5'5'1 mapz ~0'21,27 fqr all ‘?“t, absence of chadgxcept in the trivial case of convergence to
the_smallest values af. Figure 3 shovx_/s the |n’:/ar|ant distri- 2 fixed poin}, which points to a potentially useful role for
bution of the 5-5-1 map afi=0.01 with thez* boundary  cpaotic regimes in physical systefiis)]. It is also intriguing
indicated. It is clear that itv=0.01 andg is in the period-2 ¢ o relatively disordered behavidichaos and noiselike
regime, both basins of attraction are explored in the chaotlgznput), in conjunction, facilitate the emergence of a highly
regime (with probability 0.553 11 for phase 1 and 0.446 89 organized behavior: synchronization.
for phase 2, thus leading to synchronization.

A key concern from the applied standpoint is the effect of The authors would like to thank Xin Wang for providing
independent noise on the synchronization mechanism. Treprints of his work.
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