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Chaos-induced synchronization in discrete-time oscillators driven by a random input

Ali A. Minai and Tirunelveli Anand
Department of Electrical & Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-00

~Received 18 July 1997!

The research reported in this paper focuses on the response of identical discrete-time neural oscillators to a
random telegraph signal input. It is shown that there are well-defined domains in which the random input can
synchronize even a large population of oscillators within a few hundred steps. The presence of chaos is shown
to be essential for the synchronization, which suggests a possible role for chaos in spatially extended physical
systems. The effect of independent noise on the system is also studied.@S1063-651X~98!05102-2#

PACS number~s!: 05.45.1b, 84.35.1i, 05.40.1j
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Recently there has been considerable interest in the
chronization of chaotic oscillators@1–5#. While most of the
work has focused on coupled continuous-time oscillators,
possibility of synchronizing chaotic maps via a driving si
nal also has been investigated. In particular, the issue of
ing a common ‘‘noiselike’’ input to synchronize a group
identical oscillators has generated some discussion@6–10#. It
was suggested initially@6# that identical quadratic map
driven by a common noise but starting from different init
states would synchronize spontaneously over a period
about 106 steps. Subsequently, it was pointed out@7,9# that
this apparent synchronization was the result of finite pre
sion in representing the system state and that the tim
synchronization scaled exponentially with increasing pre
sion, rendering this method impractical. Recently we ha
reported that certain types of nonlinear maps can indee
synchronized reliably and rapidly by a noiselike input@11#.
In this paper we look in closer detail at one particula
simple type of driving input: a random telegraph sign
Our results are closely related to previous work on rand
maps@12–14#, but focus more explicitly on the role of chao
in producing synchronization.

The map we consider is based on a neural oscilla
model proposed by Wang@15,16# and is a discrete-time ver
sion of the Wilson-Cowan oscillator@17#. The map is given
by

zi 11[F~zt ,ut!5tanh@m~azt1ut!#2tanh@mbzt#, ~1!

wherea, b, andm are parameters andut is the drive. Note
that the drive is addedinsidethe nonlinearity and that, unlike
the quadratic map, the dynamics ofF are defined and
bounded over the whole real line. The system described
Eq. ~1! will be called am-a-b oscillator. It can be shown
that if a>2b and ut50 ;t, the map undergoes period
doubling bifurcation to chaos asm is increased@15,16#.
When the origin is unstable, the dynamics ofzt has two
basins of attraction separated byzt50. If the initial condition
z0 andut have the same sign for allt, the dynamics remains
confined to the basin with the corresponding sign.

In the fixed input caseut5u ;t if m is set such that the
map is chaotic foru50, increasinguuu causes a series o
period-halving bifurcations in both basins, leading ultimate
to cycles of period 2 for large fixed drives. There is also
hysteretic effect at the basin boundary, so that the sign of
state for very small drive values is determined in some ca
571063-651X/98/57~2!/1559~4!/$15.00
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by the sign of the initial condition@18#. Figure 1 shows the
bifurcation diagram and the Lyapunov exponents of the m
for fixed input20.25<u<0.25, starting from a positive ini-
tial condition. They are calculated numerically from

lF~u!5
1

T11 (
t5t

T1t

lnuF8~zt!u

5
1

T11 (
t5t

T1t

lnuma sech2@m~azt1u!#

2mb sech2@mbzt#u, ~2!

where t is the transient length andT is taken to be very
large.

If ut is time varying, the system effectively jumps b
tween different dynamic regimes, each with its ow
Lyapunov exponent. Previous work@12–14# has shown that

FIG. 1. ~a! Bifurcation diagram for a 5-5-1 oscillator as inputu
is changed.~b! Numerically calculated Lyapunov exponent for th
oscillator at different input values. The initial condition is positiv
in all cases.
1559 © 1998 The American Physical Society
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if a population of identical nonlinear maps starts fro
slightly different initial conditions and is subject to a com
mon noise, it will collapse into a small number of phas
locked clusters, and possibly a single synchronized grou
the Lyapunov exponent of the noisy system is negat
Clearly, however, a negative Lyapunov exponent is not s
ficient to guarantee global synchronization, only collapse
zero volume in phase space. The key requirement,in add
to negative Lyapunov exponents, is to provide a mechan
that precludes the formation of multiple clusters. Chaos p
vides such a mechanism.

Consider a population of identical mapsF(zi ,ui), which
receives a random telegraph signalutP$a,b%, 0,a,b, as
common input. The valuesa andb are chosen such thatut
5a puts the map in the chaotic regime whileut5b puts it in
the k-cycle regime. The oscillators start with different pos
tive initial conditions and in the chaotic regime, so that t
probability of accidental synchronization is zero at infin
precision. Whenut switches tob, the system hask domains
of attraction, one for each phase of thek cycle, and the
trajectories collapse towardsm<k small areas of phas
space. Ifut remains atb long enough, the collapse is com
plete and the population divides intom phase-locked clus
ters. If ut now changes toa, the clusters remain phas
locked, but the intercluster phase relationships are destro
by chaos. Whenut changes back tob, each cluster choose
one of thek available phases in the periodic regime, lead
to n<m clusters. Clearly, each time ab-a-b switch occurs,
the number of clusters cannot increase, but there is a non
probability of decrease. Ifk is small ~e.g., 2 or 4!, the num-
ber of clusters goes rapidly to 1 with very high probabilit

Two conditions are crucial to the success of the scen
described above: ~i! enough time spent in the periodic re
gime to allow sufficient collapse of trajectories~i.e., globally
negative Lyapunov exponent! and~ii ! occasional reversion to
the chaotic regime to disrupt intercluster phase relations
~i.e., intermittently positive Lyapunov exponent!. Condition
~i! is of course essential to achieve the necessary con
gence of trajectories. Condition~ii ! is more subtle. The re
version to chaos essentially makes the whole phase s
~and thus allk domains of attraction! independently avail-
able to each cluster without disrupting the phase locki
among its members, thus allowing the clusters to me
without the possibility of splitting. Reversion to just a cyc
of period 2ik.k does not produce synchronization becau
while it does increase the number of phase-space po
available to each cluster, it does not disrupt therelative
phase relationships between the clusters with respect to
domains of attraction in thek-cycle regime. Similarly, it is
also important that the input signal to the system be rand
to ensure a broad sampling of intercluster phase comb
tions. A periodic square-wave input can easily produc
phase locking between the cluster dynamics and the in
trapping the system in a multicluster situation.

We use a population of 5-5-1 oscillators to empirica
explore the phenomena described above. The input sign
given by

ut5 Ha with probability p
b with probability q512p. ~3!
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The Lyapunov exponent of the driven system can be ca
lated by substitutingut for u in Eq. ~2!. However, we ap-
proximate its mean value by

LF5plF~a!1qlF~b!. ~4!

Clearly, oncea and b are fixed, the possibility of synchro
nization is controlled wholly by thep parameter. Ifp is
small, the system spends long intervals of time in the p
odic regime and synchronization occurs as described ab
However, if p is too small, not enough time is spent in th
chaotic regime and synchronization is slow or absent a
gether. Ifp is relatively high, the time spent in the period
regime may be too short to allow for complete collapse t
cycle without interruption by chaos. However, if there is su
ficient convergence during each periodic phase~i.e., LF is
negative!, this will accumulate over time to produce synchr
nization, albeit slowly.

Consider the case whenp50.2. Figure 2~a! shows the
domains corresponding to the negative and posit
Lyapunov exponents of the system ina-b space. Let the
white region ~with negativeLF! be denotedL2 and the
black ~with positiveLF! L1. Following Yu, Ott, and Chen
@13#, we expect that ifa,bPL2, all trajectories will collapse
to a small set of clusters. The domain of synchronizati
however, is only that subset ofL2 where the two conditions
given above are satisfied. Based on the bifurcation diag
of the oscillator~Fig. 1!, the transition between the chaot
and periodic regimes occurs atu* '0.05. Condition~ii ! ~oc-
casional occurrence of chaos! is therefore satisfied in the
regions R1[$a,u* , b.u* % and R2[$a.u* , b,u* %.

FIG. 2. Domains of negative and positive Lyapunov expone
LF for a 5-5-1 oscillator with~a! p50.2 and~c! p50.5. The white
area indicatesL2 and the black areaL1. ~b! and ~c! Actual do-
mains of synchronization~white areas! for a population of fifty
5-5-1 oscillators. Each point in thea-b plane represents one simu
lation of 1000 steps. Longer simulations increase the domain
synchronization slightly, indicating slow synchronization near t
L1-L2 boundary.
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57 1561CHAOS-INDUCED SYNCHRONIZATION IN DISCRETE- . . .
Condition ~i! is satisfied in regionL2. Thus the theoretica
domain of synchronization is given byS[L2ù$R1øR2%.
However, close to the boundary betweenL2 and L1, syn-
chronization may take a long time becauseLF is only
slightly negative. Based on this analysis, synchronization
expected to occur in two bands ofR1 and fora.0.2 in R2 .
Figure 2~b! shows the results for a population of fifty 5-5-
oscillators in thea-b plane and the results are indeed
expected. Figures 2~c! and 2~d! show the results forp
50.5, which are symmetric in thea-b plane, as expected
from Eq. ~3!. Note that, in both cases, each simulation w
run only for 1000 time steps, so the broad coverage of
theoretical synchronization domainS attests also to the spee
of synchronization.

The synchronization process can be appreciated easil
considering the case whereb puts the system in the period-
regime. The basins of attraction for the two phases are
vided by the fixed pointz* of the F(z,u) map. For all but
the smallestu values, tanh@m(az*1u)#'1 if m and a are
large enough, so in the period-2 regime,z* is given approxi-
mately by the implicit equationz* 512tanh@mbz* # and is
independent ofu. For the 5-5-1 map,z* '0.2127 for all but
the smallest values ofu. Figure 3 shows the invariant distr
bution of the 5-5-1 map atu50.01 with thez* boundary
indicated. It is clear that ifa50.01 andb is in the period-2
regime, both basins of attraction are explored in the cha
regime~with probability 0.553 11 for phase 1 and 0.446
for phase 2!, thus leading to synchronization.

A key concern from the applied standpoint is the effect
independent noise on the synchronization mechanism.

FIG. 3. Invariant distribution of a 5-5-1 oscillator wit
u50.01. The distribution is calculated numerically, using 15

data points. The vertical line at 0.2127 indicates the ba
boundary for the two phases of the period-2 attractor obtained w
u is larger.
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test this, we added small amounts of independent noiseh t
i

uniformly distributed between6c, to the drive for each os-
cillator i . The drive fori thus becameut

i5ut1h t
i . We then

tracked the mean absolute distance between trajectoriest
[2@N(N21)#21( i 51

N21( j 5 i 11
N uzt

i2zt
j u after an initial syn-

chronization period oft time steps. Figure 4 plots the tim
averagê st& t against noise spreadc, showing a strongly lin-
ear dependence forp<0.2. For largerp, the time spent in
the chaotic regime begins to magnify the noise more d
matically. Note, however, that even forp as high as 0.5,
relatively large amounts of noise can be tolerated if synch
nization is desired only to a low precision, which will ofte
be the case in applications such as neural modeling. In
context, the added noise has another useful conseque
When the common part ofut

i is switched off, the oscillators
desynchronize spontaneously since they are in the cha
regime nearut50. Thus, adding a small amount of indepe
dent noise provides a desynchronization mechanism with
disrupting synchronization, a fact of great significance
possible information processing applications@5#.

To conclude, the main result of the research describe
this paper is that chaos can help nonlinear oscillators s
chronize in response to a common random driving inp
This synchronization would not happen generically in t
absence of chaos~except in the trivial case of convergence
a fixed point!, which points to a potentially useful role fo
chaotic regimes in physical systems@19#. It is also intriguing
that two relatively disordered behaviors~chaos and noiselike
input!, in conjunction, facilitate the emergence of a high
organized behavior: synchronization.

The authors would like to thank Xin Wang for providin
reprints of his work.
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FIG. 4. Mean separation of trajectories^s& t in five 5-5-1 oscil-
lators with independent uniform noise between6c added to each
oscillator’s driving signal. The average was calculated o
53104 steps following 1000 steps for synchronization. The valu
for p are 0.01~s!, 0.05 ~3!, 0.2 ~1!, and 0.5~* !. Note the linear
dependence of̂s& t on c for p<0.2.
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